Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611157

RESUMO

Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch sourced from mountain's yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 °C to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic mechanical (DMA) properties, water absorption behavior, and color. The results showed that the amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of the starch granules (30.59 ± 3.44 µm). Scanning electron microscopy (SEM) images showed oval-shaped granules evenly distributed throughout the structure of the biocomposite, without observable agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E) underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%, which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption in the biocomposites followed the principles of Fick's Law. The novelty of this work lies in its offering an alternative for the use of high-amylose mountain's yam starch to produce low-cost bioplastics for different applications.

2.
Polymers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435469

RESUMO

In this study, blends of poly(lactic acid) (PLA)/linear medium density polyethylene (LMDPE) at different weight ratios were prepared by rotational molding. Two mixing strategies were used to evaluate the effect of phase dispersion on the physical and mechanical properties: (i) Dry-blending (DB) using a high shear mixer, and (ii) melt-blending (MB) using a twin-screw extruder. Thermal, morphological, and mechanical analyses were performed on the neat polymers and their blends. The thermal analysis was completed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the blends prepared by MB had lower thermal stability than the ones prepared via DB due to some thermo-oxidative degradation through the double thermal process (extrusion and rotomolding). The morphology of the rotomolded parts showed that DB generated larger particle sizes (around 500 µm) compared to MB (around 5 µm) due to the shear and elongational stresses applied during extrusion. The tensile and flexural properties of the rotomolded parts combined the PLA stiffness with the LMDPE toughness independent of the blending technique. Neat PLA presented increments in tensile strength (54%) and flexural strength (111%) for DB compared with MB. A synergistic effect in impact strength was observed in blends with 12 and 25 wt. % of PLA prepared by DB.

3.
Polymers (Basel) ; 12(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106484

RESUMO

In this work, the suitability for the production of sustainable and lightweight materials with specific mechanical properties and potentially lower costs was studied. Agave fiber (AF), an agro-industrial waste, was used as a reinforcement and azodicarbonamide (ACA) as a chemical blowing agent (CBA) in the production of bilayer materials via rotational molding. The external layer was a composite of linear medium density polyethylene (LMDPE) with different AF contents (0-15 wt %), while the internal layer was foamed LMDPE (using 0-0.75 wt % ACA). The samples were characterized in terms of thermal, morphological and mechanical properties to obtain a complete understanding of the structure-properties relationships. Increases in the thicknesses of the parts (up to 127%) and a bulk density reduction were obtained by using ACA (0.75 wt %) and AF (15 wt %). Further, the addition of AF increased the tensile (23%) and flexural (29%) moduli compared to the neat LMDPE, but when ACA was used, lower values (75% and 56% for the tensile and flexural moduli, respectively) were obtained. Based on these results, a balance between mechanical properties and lightweight can be achieved by selecting the AF and ACA contents, as well as the performance and aesthetics properties of the rotomolded parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...